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CONVERGENCE OF A FINITE ELEMENT METHOD 
FOR THE DRIFT-DIFFUSION 

SEMICONDUCTOR DEVICE EQUATIONS: 
THE ZERO DIFFUSION CASE 

BERNARDO COCKBURN AND IOANA TRIANDAF 

ABSTRACT. In this paper a new explicit finite element method for numerically 
solving the drift-diffusion semiconductor device equations is introduced and an- 
alyzed. The method uses a mixed finite element method for the approximation 
of the electric field. A finite element method using discontinuous finite elements 
is used to approximate the concentrations, which may display strong gradients. 
The use of discontinuous finite elements renders the scheme for the concentra- 
tions trivially conservative and fully parallelizable. In this paper we carry out 
the analysis of the model method (which employs a continuous piecewise-linear 
approximation to the electric field and a piecewise-constant approximation to 
the electron concentration) in a model problem, namely, the so-called unipolar 
case with the diffusion terms neglected. The resulting system of equations is 
equivalent to a conservation law whose flux, the electric field, depends globally 
on the solution, the concentration of electrons. By exploiting the similarities of 
this system with classical scalar conservation laws, the techniques to analyze the 
monotone schemes for conservation laws are adapted to the analysis of the new 
scheme. The scheme, considered as a scheme for the electron concentration, 
is shown to satisfy a maximum principle and to be total variation bounded. 
Its convergence to the unique weak solution is proven. Numerical experiments 
displaying the performance of the scheme are shown. 

1. INTRODUCTION 

This is the first paper of a series in which we introduce and analyze a new fi- 
nite element method for numerically solving the equations of the drift-diffusion 
model for semiconductor devices, [39]: 

( 1. l a) -ecnv/ = q (C - n + p), 
( 1. lb) qnt -div Jn = -qR, 

( 1. 1 C) Opt + div Jp = -qR, 
where vq is the electric potential, n is the electron concentration, p is the 
hole concentration, e is the dielectric constant, q is the electronic elementary 
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charge, C is the doping profile, R = R(n, p) is the carrier recombination- 
generation rate, and Jn and Jp are the current densities. They are given by 

(l.ld) Jn = qu, (UTgrad n - n grad q), 
(l.le) Jp = -qlp (UTgradp +pgrad,), 

where ui and up are the electron and hole mobilities, and UT is the thermal 
voltage; see [29, pp. 7-13]. 

The main ideas of our method are as follows. Following [16], we discretize 
Poisson's equation (1.la) by using a mixed finite element method, [33], [5]. 
This method has the advantage of directly giving a numerical approximation of 
the electric field, - grad qi, which is the only quantity depending on qv that 
appears in the convection-diffusion equations (1. ib) and (1.1 c). To discretize 
the latter equations, we use an extension of the Runge-Kutta Discontinuous 
Galerkin (RKDG) method, which is a fully parallelizable method initially de- 
vised for numerically solving nonlinear conservation laws. In the scalar case, 
the RKDG method can be proven to satisfy maximum principles, even when 
the approximate solution is locally a polynomial of total degree k > 0. More- 
over, extensive numerical simulations show that the RKDG method can capture 
discontinuities within a couple of elements without producing spurious oscilla- 
tions; see [9, 10, 11, 12]. Thus, the RKDG method is a natural choice in this 
framework, since the concentrations may present strong gradients. 

The main computational advantages of our method are the following. Since 
the use of Lagrange multipliers, see [5] and the bibliography therein, renders 
the matrix of the mixed element method symmetric and positive definite, the 
computation of the approximation to grad qv is very much facilitated. Also, 
since- the RKDG method uses discontinuous approximations, the 'mass' matrix 
turns out to be a blockdiagonal matrix whose entries can be inverted by hand 
(in fact, the order of the blockdiagonal matrices is exactly equal to the number 
of degrees of freedom of the approximate solution Uh on the corresponding ele- 
ment). Moreover, since the Runge-Kutta method used is explicit, the scheme for 
the convection-diffusion equations is fully parallelizable. Finally, no nonlinear 
equation is required to be solved at each timestep. 

For the sake of clarity, the analysis of our finite element method will be done 
on a one-dimensional model problem. We set R =_ 0 and scale the equations 
(see [29, pp. 26-28], [38] and [3] for details) to obtain 

(1.2a) -frXX =c-u+ v > v , xE (-1 , 1) , 

(1.2b) UT + (uOX)X _ A2 uXX = O. 5 > O. x E (-1 , 1),5 

(1.2c) VT - (VOX)XA2 VXX = O. 5 > O. x E (-1,5 1), 

where 
C6UT 

(1.2d) q 1 1 C IIL 12' 

and / is the typical diameter of the semiconductor device. Since typical values 
of A range from 10-3 to 10-5, [29, p. 28; 37], it seems reasonable to neglect 
the second-order terms in (1.2b) and (1.2c).. The resulting equations give a good 
approximation of the initial system in the so-called 'fast' time scale, see [37, 30, 
34]. See also the singular perturbation analyses carried out in [4, 6]. By using 



A NUMERICAL SCHEME FOR THE SEMICONDUCTOR DEVICE EQUATIONS 385 

a symmetry assumption, [37, 34], we can decouple equations (1.2b) and (1.2c) 
and obtain the following equations for the scaled electron concentration u and 
the scaled electric potential 0: 

- Oxx = - U, X EE(0, ), T > 0 

UT + (U Ox)x = ?, x E (O. 1), 5 > O. 

where we have assumed, for simplicity, that the scaled doping profile c is iden- 
tically equal to 1 on (O, 1). All our results also hold for c in BV (O, 1). These 
are the equations of our model problem. To complete it, we have to impose the 
boundary conditions 

0(z, 0) =0 for z > 0O 

Orl 1) =b01(T), for z > 0O 

and 

u (t, O ) = uo (') if Ox(t,r ?) > 0, 'r > 0? 

U('r 1) = u, ('r) if Ox(t,r 1) < 0. 'r > 0. 

and the initial condition 

u(O, x) = uj(x), x E (O. 1). 

The solution of this problem has been proven to be the limit as A goes to zero 
of the corresponding 'viscous' solutions, see (2.15), in [8]. The problem of how 
close these solutions are will be addressed in this paper numerically only. It will 
be considered analytically in a forthcoming paper. 

To study the above problem, we prefer to rewrite it as the following conser- 
vation law: 

(1.3a) uT + (UI3)X = 0 T > O. x E (0 1), 
(1.3b) u(T, 0) = uo(T), iffi(T0)>0 T>0O 

(1.3c) u(T, 1) = uI(T), iffl(z, 1) < 0, z > 0O 

(1.3d) u(O, x) = uj(x), x E (O. 1),5 

where 

(1.4a) - fx = l- u, x(0 1), z> 0 

( 1.4b) fl = OXx x E (O. 1 ), T > O. 

(1.4c) q(T, 0)-0. for z > 0, 

(1.4d) O(T 5 1) = 01 (T) 5 for T > O. 

since written in this form, it is easier to compare it with a classical conservation 
law: 

(i) Notice that the equation (1 .3a) would be a classical nonlinear conservation 
law if the operator f, were an evaluation operator, i.e., if ,B = ,B(u) . However, 
in our case the value of ,B at a single point (z, x) E (O, T) x (O, 1) contains 
the information of all the values of the function u(z, *) on (O, 1). Hence a 
perturbation of the function u at any given point of the domain does have a 
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global effect immediately. This is in sharp contrast with the classical conser- 
vation laws, for which local perturbations of the solution have a local effect in 
finite time. 

(ii) The smoothness of /J(z, *) guarantees the uniqueness of the weak solu- 
tion, [31], and so the worry about convergence to the so-called entropy solution 
that pervades the numerical analysis of schemes for classical conservation laws 
is not present here. Nevertheless, the continuity of fl also guarantees that the 
characteristics of our system never intersect each other. Numerically, this means 
that there is no natural mechanism that would help the scheme to 'sharpen' the 
discontinuities, as happens in classical conservation laws when the nonlinearity 
is convex (for example). 

(iii) Note that u = 0 and u = 1 are equilibrium points of the equation of 
u along the characteristics. In fact, if x = x(z) denotes a given characteristic, 
and if we set u = u(z, x(z)), then 

dr (1.5) d U= (1 -u)u. 

From this equation it is clear that u = 0 is an unstable equilibrium point 
whereas u = 1 is an asymptotically stable point. (This situation never occurs 
for classical conservation laws.) The instability of u = 0 indicates that the 
numerical approximation, Uh , has to be prevented from taking negative values, 
however small. It also indicates that the numerical approximation of the points 
u = 0 might be a delicate matter. The asymptotic stability of u = 1 suggests the 
existence of a maximum principle for the solution u. Notice that for the very 
simple case in which 11 = fi(x) = 1/2 - x, uo- 0, ul _ 1, and ui(x) = x, the 
solution of the conservation law (1.3) does not remain bounded. In this case, 

U (z) HLoo(O, 1) goes to infinity as z goes to infinity; see Figure 1. 

, I . 
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FIGURE 1. Blowing up of the solution u of (1.3) when 
fix - 1A=l/2 - x, uO = 0 ul. - I , nd u. ( xA =x 
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(iv) Finally, since the solution of equation (1.5) is 
[ U i(X (O)) 1 

u~t z X(T)) = [1 + (eT - l)ui(x(O)) e 

ui(x(O)) et, for 0 < << 1, 

we expect the total variation of the concentration to grow in time as fast as et, 
without the boundary data being responsible for such a growth. This is also in 
strong contrast to what happens in classical conservation laws, where the total 
variation does not increase in such a situation. 

The finite element method we consider in this paper takes the approximation 
to grad 0 to be a continuous piecewise linear function and the approximation to 
u to be a piecewise constant function. The resulting scheme can be considered 
to be a counterpart of the monotone schemes for conservation laws. With this 
fact in mind, the techniques for analyzing monotones schemes, [15, 18], will 
be suitably extended to our present setting. The main objective of this paper is 
to establish the stability of the new method and to prove its convergence in the 
case of the model problem (1.3), (1.4). Particular care has to be taken to relate 
the behavior of the piecewise linear continuous approximate electric field given 
by the mixed finite element method, with the behavior of the piecewise constant 
convected approximate electron concentration. Our analysis of the boundary 
conditions is inspired by the ideas introduced in [25]. A forthcoming paper will 
be devoted to obtaining error estimates. 

No finite element method seems to have been proposed and analyzed for the 
hyperbolic problem (1.3), (1.4). Most methods are defined on the full equations 
( 1.1), and take advantage of the parabolicity of equations for the concentrations. 
In order to do that, a widespread practice consists in using the so-called Boltz- 
mann statistics as variables. This change of variables allows the currents to be 
expressed in the form {c gradz} in an effort to render the equations (1. lb) 
and (1.1c) 'naturally' parabolic; see, e.g., [40, 2]. However, this practice 'hides' 
the convective character of the equations. This is why we do not use Boltzmann 
statistics as variables. The same point of view is taken in [16, 32], where a 
direct hold of the convection phenomenon is attempted through the modified 
method of characteristics. We want to emphasize that, unlike the methods in 
[16, 32], our scheme is conservative. 

Our proposed method can also be used to compute the stationary solution of 
(1. 1) by simply letting the final time T be large enough. Of course, other more 
efficient ways to do so can be devised, but we shall not pursue this matter in 
this paper. Methods for computing stationary solutions of (1.1) can be found 
in, e.g., [1, 17, 22, 35]. The stationary solutions of (1.1) may be considered to 
be the fixed points of the so-called Gummel map; see, e.g., [19]. The iterative 
procedures of the above-mentioned papers try to construct numerical approx- 
imations to the Gummel map (and to its fixed points). A rigorous analysis of 
the convergence of such numerical approximations can be found in [20]. These 
iterative procedures can also be applied to solve the transient problem; see [21] 
and [14]. We finally point out that a new discretization technique that gen- 
eralizes to the two-dimensional case the (one-dimensional) Sharfetter-Gummel 
method has recently been introduced in [7]. 

The paper is organized as follows. In ?2a, we define the set of data with 
which we deal in this paper and define the weak solution of problem (1.3), 
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(1.4). In ?2b, we present our numerical method. In ?2c, we state and briefly 
discuss our results on stability (Theorem 2.1), continuity with respect to the 
data (Theorem 2.2), and convergence to the weak solution (Theorem 2.3). We 
also include therein an additional convergence result (Theorem 2.4) that will be 
used in a forthcoming paper to obtain error estimates. In ?2d, we state a result 
(Theorem 2.5) concerning the smoothness with which the boundary conditions 
are satisfied by the approximate solution. This result requires reasonable ad- 
ditional restrictions on the data. Finally, in ?2e, we show several numerical 
results illustrating the performance of the scheme. The proofs of our theorems 
are contained in the Supplement section at the end of this issue. 

2. THE NUMERICAL METHOD AND THE MAIN RESULTS 

2a. The weak solution. We shall assume that the initial data ui and the 
boundary data uo, ul and q$1 satisfy the following regularity conditions: 

(2.1a) uoz(), ul(T), ui(x) E [0, u*], T E [0, T], x e [0, 1], 
(2.1b) uou l E BV(O, T), and ui(x) e BV(O, 1), 

(2. 1c) +1(T) e[?' Xl]' TE [?'T], 
(2.1d) ki e BV(O, T), 

where, see remark (iii) in ? 1, we assume that 

(2.1e) U* > 1 

The weak solution of (1.3) and (1.4) is defined to be a function (u, fi, 0) E 
LO(0, T; BV(O, l))xL??(0, T; WII(0, l))xL??(O, T; BV(O, 1)) satisfying 
the following weak formulation: 

rT Il 

1T11j { U(T, X) pT(T, x) + u(T, x) fi(T, x) px(Q, x) } dx dT 

j ui(x) q(O, x) dx 

(2.2a) + f(U(T, 1-), U(I); fl(T, 1)) (qT, l)dT 

T 

j f(U0(T), U(T, O+); fl(T, o)) (T, o) dT = O, 

VP E Fol ([O, T) x [O. I]), 

where the flux f is defined by 

(2.2b) f(Uleft, Uright; ,8) = Uleft fl + Uright f 3 

with by- = min{fl, 01, and fl+ = max{/3, 0}, and 

fix x(T, X) w (x) dx 
(2.3a) j w 

=j/ (1-u(Tx))w(x)dx, VW E L2(0, 1), 
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[ /(T, x) v(x) dx 
(2.3b) JO 

= jA (T, x)vx(x)dx+(lT)v(l), Vv EH1(0, l). 

Notice that any function in WI, 1(0, 1) is continuous, and that any function 
in BV (0, 1) has well-defined limits from the left and from the right. Thus, the 
last two integrals of (2.2a) have a meaning. 

Notice also that the role of the flux f is to select the correct boundary 
value for u according to (1.3b) and (1.3c). To see this, assume that u is a 
very smooth solution of (2.2). Take functions ' E FO%((O, T) x [0, 1)), and 
integrate by parts in (2.2a). Since u satisfies equation (1.3a) pointwise, we get 

T 
j (u(r, O+) - uo(T)) fl+(T, 0) p(T, ) dT = 0, 

and since we are assuming u to be smooth, this implies 

U(T, O+) fl+(T, 0) = uo(T) fl+(T, 0), T E (0, T) , 
or 

U(T, O+) = uo(T) if fl(T, O) > O. T E (O. T), 
which is nothing but condition (1.3b). Condition (1.3a) can be obtained in a 
similar way. 

2b. The numerical scheme. We first introduce some notation. Let 

1Xi+I121i=0, ...,,, be a partition of [0, 1] with xI12 = 0 and X,,+112 = 1 . Simi- 
larly, let {Tn}n=O,...,nT be a partition of [0, T], with zT = 0 and TfT = T. We 
set Ii = (xi-112, xi+112), Axi = Xi+112 - Xi112, and Jn = [Tn. Tn+l) Tn = 

T T . Define Ax = maxi=I,... Ax{Axi } and AT = maxn=O,.. ,nTl{AnT }. 

We associate with these partitions the following spaces: 

(2.4a) VA, = {vAc E FO(0, 1): vII, z P1(Is), i = 1,..., nxu} 
(2.4b) Wa = {wA E L?"(0, 1): wAI1, E P?(I1), i = 1, ..., nx}, 

(2.4c) WAT = {WAT right-continuous: WATIJn 
. 

p0(Jn)n = 0, ... , nT - 1}. 

If vAX E VA, then Vi+112 denotes vAx(xi+i12) for i = 0,.. , nx. If wAx E 
WA, then wi denotes the constant value wx(x), x z Ii, for i = 1, ..., nx; 
the values wo and WnX+I denote the exterior trace at x = 0, w& (O-), and 
at x = 1 , wx (I +), respectively. Finally, if WAT E WAT, then wn denotes the 
constant value WAT(T) 

T E Jn . 

To discretize (1.3), (1.4), we first discretize the data by setting 

(2.5a) 0q1,AT = WIT(Ol) ' 

(2.5b) UOAT = PWAT(UO)' 

(2.5c) U1,AT = EDWAT(U1), 

(2.5d) Ui,Ax = I~w,(Ui) 

where PI denotes the L2-projection into the space Y. The approximate 
solution Uh is taken to be in the space WAT 0 Wx and is required to satisfy 
the equation 

(2.6a) (Un+I - un)/ATn + (41/2- 1 1/2)/Axi = 0 
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where the numerical flux fi+l/2 = (Uin, u7n1; fl1~1I2) is given by (2.2b), i.e., by 

(2.6b) fi+ l /2 = Ui fli+i/2 + ui+l fli+1/2* 

The function (Ah, ( h) E WA, 0 VA, X WA, 0 WA, is defined by the following 
mixed finite element method: 

I1 

-] (I3fh)x(z", x) wAx(x) dx 
(2.7a) 0 

=jA (l -Uh(z n ,x)) wAx(x) dx, VwAx E WAx, 

J fih(T, x) vAx(x) dx 

(2.7b) ? I 
(27b - jO (, X) (vAx)x(x) dx + QIbA (T ) AX(1), VVAX E VAX 

Note that, for a given function flh, the scheme (2.6) is nothing but the well- 
known upwinding scheme (which coincides with the Godunov scheme in this 
case). Since this is a monotone scheme under a suitable CFL condition, it is 
reasonable to expect to have for this scheme convergence properties similar to 
the convergence properties of monotone schemes for scalar conservation laws, 
[15]. We shall see below that this is indeed the case. 

Notice that for the upwinding numerical flux f+i /2, (2.6b), to be well de- 
fined, the function fIh (z, *) has to be continuous. This requirement is naturally 
taken into account by the mixed finite element method used to compute it. This 
is an important advantage of using the mixed method (2.7). 

Thus the algorithm of our numerical method is: 
(2.8a) Compute the functions UOAT, U1nA, ui,Ax and 0q1,AT by (2.5); 
(2.8b) Set Uh(O, *) = Ui,Ax(A); 
(2.8c) For n = 0, ... , nT - 1 compute Uh(Tn+l, *) as follows: 

(i) Compute (Ohh(zn, *), (n, .)) by using the mixed finite element 
method (2.7); 

(ii) Set Uh(T,, 0-) = Uo AT(Tn) and Uh(T,, 1+) = U1 ,AT(Tn); 
(iii) Compute Uh(n+ I, x) for x E (0, 1) by using the scheme (2.6). 

2c. Stability and convergence results. In this section we state and briefly dis- 
cuss the stability properties of the scheme (2.8), Theorem 2.1, its property of 
continuity with respect to the data, Theorem 2.2, and its convergence property 
to the weak solution of the original problem, Theorem 2.3. We also obtain an 
estimate which will be used elsewhere to obtain error estimates for the scheme 
under consideration, Theorem 2.4. 

Theorem 2.1 (Stability). Suppose that for n = 0, ... , nT - 1 the following CFL 
condition is satisfied: 

(2.9) min <mmi '_ '1' 
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Then the following stability properties hold: 

(2.10Oa) Uh(r, X) E [0, a*], (,r, x) E (0, T) x (0, 1), 

(2. 1 b) 11 Afh I I L-(0,T; L-(0,1)) < + 2 maxl u* - 1} 

(2.1Oc) 11 flhx IIL(OT;L1(O, 1)) < max{1, u -} 

(2. 1 d) 11 Oh IIL-(O, T;L-(O, 1)) < + 2maxfl u* - 1}, 

(2.1Oe) I Ih IhL-(OT;BV(O, 1)) < q$ + 2 max{1, u* - 1}. 

Moreover, there is a constant C1, depending solely on the data and T, such that 

(2.1 Of) 11 Uh II L?(O, T; BV(O, 1)) _< CI . 
The scheme for Uh is thus a total variation bounded scheme that satisfies a 

sharp maximum principle. Notice that u* > 1 , by (2.1 e). The maximum prin- 
ciple is not true for u* < 1 . This reflects the fact that along the characteristics 
the point u = 1 is an asymptotically stable equilibrium point; see remark (iii) 
in ?1. 

In the following result, (Vh, 5Yh, Yh) stands for the approximate solution of 
(1.3), (1.4), with data vi, v0, vo , v1Y satisfying (2.1). 

Theorem 2.2 (Continuity with respect to the data). Suppose that the CFL con- 
dition (2.9) is satisfied. Then, 

| uh() - Vh(T) IIL1(O, 1) 

< eC1 T{| ui - vi L1(0, 1) + 2 CH11 qI - V1 IIL1(OT) 
+ (OI4 + I max{1, u* - 1})(|| uI - V IIL1(OT) + 11 UO - VO IIL1(0,T))} 

Theorem 2.3 (Convergence). Suppose that the CFL condition (2.9) is satisfied. 
Then the sequence {(uh, Ifh, q h)}h>O generated by the scheme (2.8) converges 
in L??(O, T; L1(0, 1)) x L(O, T; W 1'(O, 1)) x L(O, T; BV(O, 1)) to the 
unique weak solution of (2.2), (2.3), (u, fl, q0). Moreover, 

u E L?(O, T; BV(O, 1)) n W?O(O T; L'(O, 1)). 

In [31], the uniqueness of the weak solution of (2.2) and (2.3) was proven for 
01 constant only. However, the argument used therein can be easily extended 
to the case we consider in this paper. The uniqueness of the weak solution can 
also be deduced from the first inequality of Theorem 2.4 below. 

To state our following result, we need to define the 'entropy' form 
Eeo '(u, v; A3). Kruzhkov [23] introduced this form in his study of classical 
conservation laws. Later, Kuznetsov [24] used it to obtain an approximation 
theory; see also [36, 26, 27, 28, 13]. Let u be the entropy solution of a classical 
conservation law, and let Uh be the approximate solution given by a monotone 
scheme. It was proven, in [23] and [24] respectively, that 

E8eo8(u, v) <0 

EPO (Uh, u) < C (Ax/8 + AT/so), 

where v is a reasonably general function (the function /1 does not appear in 
these entropy forms E, since it does not appear in the framework of classical 
conservation laws). Using these key results, Kuznetsov [24] obtained a bound 
for the error U Ih - U IILOO (0, T; L) . In a forthcoming paper, we prove that error 
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estimates can be obtained for the scheme under consideration provided that 
similar results are obtained. Our next result contains those results. 

Let e0 and e be arbitrary positive real numbers, and let w: IR - IR be an 
even nonnegative function in F??(IR) with support included in [-1, 1], and 
such that f1 w = 1. We set 

x (T. x; z' , x') = w -, ( z- ') We (x - x'), 

where w,(s) = w(s/v)/v, Vs E R. Let us denote by U an arbitrary even 
convex function with Lipschitz second derivative, such that U(O) = 0. 

The entropy form, E80 8(u, v; /3), is defined as follows: 

T 1 

(2. 1 la) E10 e(u, v; 68 J ((u, v(Tr, X); fl; (1(,, X; *,*)dxdr, 

where 
oT Iw 

e(u, C; c ; A) = - j j { (u(z, x) - c) (P(, x) 

+ U(u(z, x) - c) /(z, x) qp(r, x) } dx dz 

+ j U(u(T x) - c) ((T, x) dx 

(2. 1 lb) j U(ui(x) - c) (u(z, x) dx 

+ ( G(u(i, I -) - c, uG (Ur) - C); = uf)3, 1)) (+Urg, ) ) d/ 

AG(uo(,r) - C, u(,r, 0+) - C ; fl((t, 0)) (p(t, 0) dr 

vT Ib 
- f {#(t,rx) V(u(t,rx), c) ((t,rx) Idx dr, 

where the 'entropy' flux G and the function V are defined by 

(2.1 I c) G(uleft, u right; 3)= U(Uleft) ,' + U(Uright) , 

(2.1 Id) V(u, c) = U(u - c) - u U (u - c), 

and where /3 is obtained from u by (2.3). 

Theorem 2.4 (on the form E8 8). Suppose that the CFL condition (2.9) is sat- 
isfied. Then 

Ee? I(u, v; /3) = limE O (Uh , V ; Ah) < 0. 
hJO 

Moreover, there exist two constants C2 and C3, depending only on the data and 
T, such that 

Eeo' 8 (Uh, U ; /h) < LC2 (Axle + At/80) + MC3 At, 

where L = supER I U(u), M= SupER I U(u)" 

2d. A result about the continuity at the boundary. In this section we state a 
result concerning the behavior at the boundary of the approximate solution. 
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Our result will be stated in terms of the following quantities 

IT 

ax+ ( e; )=spJ |UA)- u(T, O-) I fl+(T, 0) dT, ~0 (e6, u f) sup j u(T, A 
0<A<e 0 

IT 

v71(e,u;/)= sup - Iu(T, l-A)-u(T, l+)fl-(T, l)ddT, V, 0<A<eJ0 

which give a measure of the smoothness with which the boundary conditions are 
satisfied. To see this, suppose that vx+0(e, u; /) < Ce and that fl+(z, 0) > 

fmin > O for T E [0, T]. Then 

T T 

10 U(T, e)-U(T, 0-) d d? < Iu(T, e)-U(T, O-) If+(T, O) dT//min 

? vX,0(8 u; f)/flmin 

? 9//3min. 

In other words, the mapping x -* u(x) is Lipschitz continuous in L1 (0, T) at 
x = 0 provided that the inflow velocity, 8l+(z, 0), is bounded away from zero 
uniformly. However, this continuity property does not hold if /3+ (z, 0) = 0 for 
some T E [0, T] (think of the extreme case in which /3 _ 0 and a discontinuity 
is sitting precisely at x = 0 ). 

If fl+(T, 0) > fimin > 0 for T E [0, T], it is possible to obtain an estimate of 
Vx+j o(9 Uh; /h) . (Such an estimate follows from a uniform bound on the total 
variation in time of Uh(X), for x near x = 0; see ?3e of the Supplement.) 
However, if fl+(T, 0) is very close to zero, the estimate is much harder to get. 
In the technique we use, we need to control the number of disjoint intervals 
on which 8+(T, 0) can be uniformly bounded away from zero. (Similarly, we 
also need to control the number of disjoint intervals on which fl-(T, 1) can 
be uniformly bounded away from zero.) For this purpose, we introduce the 
set { K1 }IN1 of disjoint intervals such that (0, T) = UN I K1, and consider the 
following two important cases: 

(2.12a) u* = I, uo =O0, and ul K,, fl K, are constant, /l,...,N. 

(2.12b) 0l|K, E W"'(Kl), I1= 1, ...,5 N. 

In the first case, it can be proven that the above-mentioned numbers can be 
uniformly bounded. In the second case, we allow those numbers to increase 
unboundedly as Ax goes to zero. However, their growth can be controlled by 
using the regularity condition on q1 . 

Theorem 2.5 (Continuity at the boundary). Suppose that the CFL condition (2.9) 
is satisfied. If the hypothesis (2.12a) is satisfied, then there exist constants C4 
and C5, depending solely on the data and T, such that 

(2.13a) vx o(e, Uhh; h) < C4(e+Ax), 

(2.13b) vx l(9, Uh; fh)< C5(e+AX). 
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1.0 

0.8~~~~~~~~~~~~~~~~~~~4 

0.8 - 

0.4 - 0.6 

0.4 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 2. Example 1: the approximate solution Uh, 
with Axi 1/100, at T = 0, 1, 2. The '+' repre- 
sents the value of the approximate solution at the mid- 
dle of the elements. The solid line represents the exact 
solution at time T = 1 

If the hypothesis (2.12b) is satisfied, then there exist constants C4 and C5, 
depending solely on the data and T, such that 

(2.14a) vi0(e, Uh; /h) < C4(e+Ax) /A 

(2.14b) ux l(e Uh; fh) < ? 5C(+Ax)/, 

provided that e + Ax is small enough. 

2e. Numerical results. The numerical experiments we describe in this section 
have been designed (i) to show the qualitative behavior of the approximate so- 
lution, (ii) to display the convergence properties of the scheme, and (iii) to show 
that our approximate solution approximates well the viscous solution (2.15) for 
the specified range of A-values, even for large values of T. In all the examples 
the CFL condition (2.9) has been used. 

Example 1. uo 0,u _ 1, ui (x) = x, l/8. 

In Figure 2 we display the approximate solution uh at different times (the 
exact solution at T = 1 is also included); compare with Figure 1. Notice that 
the monotonicity of the solution is preserved, as stated in Corollary 3.7 of the 
Supplement. 

In Tables 1 and 2 we display the errors and their respective order of con- 
vergence at time T = 1. From Table 1 we see that the scheme is first-order 
accurate in the electric field and in the electric potential. We also see that in 
this case the scheme is first-order accurate in L1 but only half-order accurate 
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TABLE 1. Example 1: Convergence in (0, 1) at T = 1 
and Ax = 1/100 

i ~~~LOO Li 

102. error order 102. error order 

u 5.7713 0.545 0.4045 0.937 
/1 0.1176 0.924 0.0279 0.997 

0.1820 0.986 0.0286 1.003 

TABLE 2. Example 1: Convergence in (0, 1) \ [.25, .35] 
at T = 1 and Ax = 1/100 

102. error order 102 error order 

u 2.2075 0.890 0.2142 1.121 
/1 0.1005 1.055 0.0211 1.112 

0.1819 0.986 0.0244 1.051 

in L?? in the concentration. This discrepancy is caused by the discontinuity of 
the derivative of the exact electron concentration in the interval (.25, .35). To 
see this, it is enough to study the errors outside this interval. Indeed, in Table 2 
we see that the scheme is first-order accurate (in the electron concentration) in 
both LI and L?? on [0, .25] U [.35, 1]. These observations indicate that the 
scheme is first-order accurate when the solution is smooth enough. Thev also 
indicate that the influence of the discontinuity in the derivative of the electron 
concentration on the quality of the approximation has only a local effect. 

Example2. uo_0, ul u, i =_0, 01_1/8. 

In Figure 3 (see next page) we display the approximate and exact solutions 
at T = 2. Notice how the biggest error in the approximation of u and of /1 
occurs around the location of the discontinuity x ' .6398 of u. Notice also 
that the biggest error in 0 occurs at the critical point of b, not at the location 
of the discontinuity of u. 
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1.0 . ~~I . , , 1.0 

0n4 0.6~~~~~~~~~~~~~~~~~~~4 
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0.6 

0.2 + 

0.0 .. 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 3a. Example 2: the approximate concentration 
Uh at T = 2 with Ax_ 1 / 100. The '+' represents 
the value of Uh at the middle of the elements. The solid 
line represents the exact solution 

0 .6 . . 
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0.1 

0.0 

-0.1 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 3b. Example 2: the approximate negative elec- 
tric field /h at T = 2 with Ax_ 1/100. The '+' 
represents the value of /h at the extremes of the ele- 
ments. The solid line represents the exact solution 
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0.00 r 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 3c. Example 2: the approximate electric poten- 
tial Oh at T = 2 with Axi _ 1/100. The '+' rep- 
resents the value of Oh at the middle of the elements. 
The solid line represents the exact solution 

0.160 

0.155 

0.150 

0.145 

0.140 ... . . . 
0.40 0.45 0.50 0.55 0.60 0.56 0.70 

FIGURE 3d. Example 2: zoom on the previous figure. 
The biggest error in the approximation of 0 by Oh does 
not occur at the location x 0.6398 of the discontinu- 
ity of u 
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TABLE 3. Example 2: Convergence in (0, 1) at T = 2 
and Ax = 1/800 

l Loo0 Li 

102- error order 102- error order 

u - - 0.7886 0.487 
/3 0.3877 0.489 0.0146 0.964 

0.0271 0.998 0.0068 0.996 

In Table 3 we show the errors and their orders of convergence. Notice that 
the orders of convergence, in LI , to u and fl are , 1/2 and - 1 , respectively. 
This indicates that the presence of the discontinuity in u has only a local effect 
in the approximation of fl. 

Example 3. u0 0, u I 1, ui _ 0, X1 =1/8. In this experiment we want to 
compare the approximate solution given by the method (2.8) with the 'viscous' 
solution (uk, /3), ql) defined by the following equations: 

(2.15a) u A+ (u Al A2 UAx T > 0, x E (0, 1), 

(2.15b) uA(T, 0) = uO(T), T > 0,~ 

(2.15c) u1(T, 1) = uI(T), T > 0, 

(2.15d) uA(?, x) = uj(x), x E (0, 1), 

where 

(2. 1 Se) - 9AX = 1 - s, x E (0 , 1 ), T > 0 , 

(2.15f) 9A =? OAX E(0, 1), > 0, 

(2.15g) q$(T, 0) =, for T > O, 

(2.15h) OA(T 1) =1 X(T), for T > 0. 

We take the same discretization parameters as in the previous example. In 
Figure 4 the approximate concentration, the 'nonviscous' and the 'viscous' con- 
centrations are compared at time T = 10 around the boundary layer. (If those 
concentrations would have been compared on the full interval [0, 1], no dif- 
ference between them would have been detected.) At that time all the solutions 
are very close to the stationary solutions. We see that the size of the boundary 
layer created by the diffusion is approximately equal to Ax = 1/100 for the 
biggest value of 2A, i.e., for A2 = 10-6. We see that the approximate solution 
provides an excellent approximation to the 'viscous' concentration. 

Our numerical results thus indicate that the method (2.8) is a very robust 
method, which is uniformly first-order accurate in L?? for the electron concen- 
tration, the electric field, and the electric potential when the exact solution is 
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1.0 L ; I 

0.8 1 

0.6 

0.4 

0.2 

0.0 I 
'. ! . I . I . I . I X 

0.46 0.48 0.50 0.52 0.54 

FIGURE 4. Example 3: detail of the concentrations Uh, 

u and uA at T = 10. In this case Axi _ 1/100 and 
= 10-3 . The '+' represent the values of Uh at the 

midpoints of the elements, the dashed line represents 
u, and the solid line uA 

smooth. If the electron concentration is discontinuous, the scheme is half-order 
accurate in L1 for the electron concentration and half-order accurate in L?? 
for the electric field. We have also verified that in this case, the presence of 
the discontinuity has only a local effect on the quality of the approximation. 
Finally, we have verified that the scheme provides a good approximation to the 
'viscous' solution, see (2.15), even near the stationary state. 
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